Bayesian Model Scoring in Markov Random Fields
نویسندگان
چکیده
Scoring structures of undirected graphical models by means of evaluating the marginal likelihood is very hard. The main reason is the presence of the partition function which is intractable to evaluate, let alone integrate over. We propose to approximate the marginal likelihood by employing two levels of approximation: we assume normality of the posterior (the Laplace approximation) and approximate all remaining intractable quantities using belief propagation and the linear response approximation. This results in a fast procedure for model scoring. Empirically, we find that our procedure has about two orders of magnitude better accuracy than standard BIC methods for small datasets, but deteriorates when the size of the dataset grows.
منابع مشابه
Structure Learning in Markov Random Fields
Scoring structures of undirected graphical models by means of evaluating the marginal likelihood is very hard. The main reason is the presence of the partition function which is intractable to evaluate, let alone integrate over. We propose to approximate the marginal likelihood by employing two levels of approximation: we assume normality of the posterior (the Laplace approximation) and approxi...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملDouble Markov random fields and Bayesian image segmentation
Markov random fields are used extensively in modelbased approaches to image segmentation and, under the Bayesian paradigm, are implemented through Markov chain Monte Carlo (MCMC) methods. In this paper, we describe a class of such models (the double Markov random field) for images composed of several textures, which we consider to be the natural hierarchical model for such a task. We show how s...
متن کاملStatistical image segmentation using Triplet Markov fields
Hidden Markov fields (HMF) are widely used in image processing. In such models, the hidden random field of interest S s s X X ∈ = ) ( is a Markov field, and the distribution of the observed random field S s s Y Y ∈ = ) ( (conditional on X ) is given by ∏ ∈ = S s s s x y p x y p ) ( ) ( . The posterior distribution ) ( y x p is then a Markov distribution, which affords different Bayesian process...
متن کاملPoisson / gamma random field models for spatial statistics
Doubly stochastic Bayesian hierarchical models are introduced to account for uncertainty and spatial variation in the underlying intensity measure for point process models. Inhomogeneous gamma process random fields and, more generally, Markov random fields with infinitely divisible distributions are used to construct positively autocorrelated intensity measures for spatial Poisson point process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006